If an apple is divided into five equal parts, each part is said to be one fifth (
If out of these five equal parts, 2 parts are eaten, we say two-fifth (
The numbers
In the fraction
- Classification of Fractions
- Reducing fraction to lowest terms
- Equivalent Fractions
- Simple and Complex Fractions
- Like and Unlike Fractions
- Comparing Fractions
- Insert fraction between two given fractions
- Operations on fractions
- Problems Involving Fractions
- Exercise
Classification of Fractions
1. Decimal fractions: Denominator is 10 or higher power of 10.
e.g.:
2. Vulgar fractions: Denominator is other than 10, 100, 1000, etc.
e.g.:
3. Proper fractions: Denominator is greater than it’s numerator.
e.g.:
4. Improper fractions: Denominator is less than its numerator
e.g.:
5. Mixed fractions: Consists of an integer and a proper fraction
e.g.:
If the numerator is equal to the denominator, the fraction is equal to unity
e.g.:
Example: Convert
Solution:
Example: Convert
Solution: On dividing 19 by 5 we have:
Quotient=3, Remainder=4, Divisor=5
Alternatively,
Note:
- The value of a fraction remains the same if its numerator and denominator both are either multiplied or divided by the same non-zero number
- A fraction must always be expressed in its lowest term
Reducing Fraction to Lowest Term
First of all find H.C.F of both the terms (numerator and denominator) of the given fraction. Then divide each term by this H.C.F.
Example: Reduce
Solution:
Alternative method: Resolve both numerator and denominator into prime factors ,then cancel out the common factors of both numerator and denominator.
Equivalent Fractions
Fractions having the same value are called equivalent fractions.
Simple and Complex Fractions
A fraction whose numerator and denominator both are integers is called a simple fraction, whereas a fraction, whose numerator or denominator or both are not integers, is called a complex fraction.
Example: Each of
Each of
Like and Unlike Fractions
Fractions having the same denominators are called like fractions ; whereas the fractions with different denominators are called unlike fractions.
Converting unlike fractions into like fractions:
Example: Change
Solution:
Comparing Fractions
Convert all the given fractions into like fractions. Then the fraction with the greater numerator is greater.
Example: Compare the fractions:
Solution:
L.C.M of the denominators 3, 4, 12 and 16=48
Alternate method: Convert all the given fractions into fractions of equal numerators. The fraction which has a smaller denominator is greater.
Insert Fraction between two Fractions
Add numerators of the given fractions to get the numerator of the required fraction . Similarly add their denominators to get denominator of the required fraction. Then simplify if required.
Example: Insert three fractions between
Solution:
Operations on fractions:
- Addition / Subtraction
- For like fractions add or subtract their numerators ,keeping the denominator same.
- For unlike fractions ,first of all change them into like fractions and then do the addition or subtraction as above.
- Multiplication
- To multiply a fraction with an integer ;multiply its numerator with the integer
- To multiply two or more fractions ;multiply their numerators together and their denominators separately together
- Division:
- To divide one quantity by some other quantity (fraction or integer), multiply the first by the reciprocal of the second.
- Using of:
- The word
between any two fractions, is to be used as multiplication.
- The word
- Using BODMAS:
- The word BODMAS is the abbreviation formed by taking the initial letters of six operations: Bracket, Of, Division, Multiplication, Addition and Subtraction.
According to the rule of BODMAS, working must be done in the order corresponding to the letters appearing in the word.
Example: Simplify:
Solution:
Problems Involving Fractions
Example: What fraction is 6 bananas of four dozen bananas?
Solution:
Here 6 bananas are to be compared with 4 dozen that is
Example: A man spent
Solution:
The man spent
Therefore he still has
Note: In fractions the whole quantity is always taken as 1
Since
Example:
Solution:
Length of the pole
Exercise
- Express the following improper fractions as mixed fractions:
- Express the following mixed fractions as improper fractions:
- Reduce the given fractions to lowest terms:
- True or false:
are equivalent fractions. - Distinguish each of the following fractions as a simple fraction or a complex fraction:
- For each pair given below state whether it forms like fractions or unlike fractions:
- Find which fraction is greater:
- Insert two fractions between:
- Simplify:
- Subtract
from the sum of - A student bought
of yellow ribbon, of red ribbon and of blue ribbon for decorating a room. How many metres of ribbon did he buy? - A man spends
of his salary on food, on house rent and on other expenses. What fraction of his salary is still left with him? - In a business , Ram and Deepak invest
of the total investment. If Rs 40,000 is the total investment, calculate the amount invested by each. - Geeta had 30 problems for homework. She worked out
of them . How many problems were still left with her? - Shyam bought a refrigerator for Rs 5000. He paid
of the price in cash and the rest in 12 equal monthly installments. How much had he to pay each month? - In a school
of the children are boys. If the number of girls is 200, find the number of boys. - If
of an estate is worth Rs 42,000, find the worth of whole estate. Also find the value of of it. - After going
of my journey, I find that I have covered 16 Km. how much journey is still left? - When Krishna travelled 25 km, he found that
of his journey was still left. What was the length of the whole journey?