MathsTips.com

Maths Help, Free Tutorials And Useful Mathematics Resources

  • Home
  • Algebra
    • Matrices
  • Geometry
  • Trigonometry
  • Calculus
  • Business Maths
  • Arithmetic
  • Statistics
Home » QnA » General Solution of differential equation (x – y^2)dx +y(5x + y^2)dy

General Solution of differential equation (x – y^2)dx +y(5x + y^2)dy

The general solution of the differential equation \left( {x - {y^2}} \right)dx + y\left( {5x + {y^2}} \right)dy = 0 is:

  1. {\left( {{y^2} + x} \right)^4} = C\left| {{{\left( {{y^2} + 2x} \right)}^3}} \right|
  2. {\left( {{y^2} + 2x} \right)^4} = C\left| {{{\left( {{y^2} + x} \right)}^3}} \right|
  3. \left| {{{\left( {{y^2} + x} \right)}^3}} \right| = C{\left( {2{y^2} + x} \right)^4}
  4. \left| {{{\left( {{y^2} + 2x} \right)}^3}} \right| = C{\left( {2{y^2} + x} \right)^4}

Solution:

Find the general solution of a given differential equation using the substitution method.

Given, \left( {x - {y^2}} \right)dx + y\left( {5x + {y^2}} \right)dy = 0

\begin{gathered} \Rightarrow y\left( {5x + {y^2}} \right)dy = - \left( {\left( {x - {y^2}} \right)dx} \right) \hfill \\ \Rightarrow \frac{{dy}}{{dx}} = \frac{{ - \left( {x - {y^2}} \right)}}{{y\left( {5x + {y^2}} \right)}} \hfill \\ \end{gathered}

\Rightarrow y\frac{{dy}}{{dx}} = \frac{{\left( {{y^2} - x} \right)}}{{\left( {5x + {y^2}} \right)}} … (1)

Let {y^2} = t

On differentiation, we get

\Rightarrow 2y\frac{{dy}}{{dx}} = \frac{{dt}}{{dx}}

Then, equation (1) becomes

\Rightarrow \frac{1}{2}\frac{{dt}}{{dx}} = \frac{{\left( {t - x} \right)}}{{\left( {5x + t} \right)}} … (2)

Now, Substitute t = vx

On differentiation, we get

\Rightarrow \frac{{dt}}{{dx}} = v + x\frac{{dv}}{{dx}}

Then, equation (2) becomes

\Rightarrow \frac{1}{2}\left\{ {v + x\frac{{dv}}{{dx}}} \right\} = \frac{{v - 1}}{{5 + v}}

\begin{gathered} \Rightarrow x\frac{{dv}}{{dx}} = \frac{{2v - 2}}{{5 + v}} - v \hfill \\ \Rightarrow x\frac{{dv}}{{dx}} = \frac{{ - 3v - {v^2} - 2}}{{5 + v}} \hfill \\ \Rightarrow x\frac{{dv}}{{dx}} = \frac{{ - (3v + {v^2} + 2)}}{{5 + v}} \hfill \\ \end{gathered}

\Rightarrow \frac{{5 + v}}{{3v + {v^2} + 2}}dv = - \frac{{dx}}{x} … (3)

Now, integrate equation (3)

\Rightarrow \int {\frac{{5 + v}}{{3v + {v^2} + 2}}} dv = \int { - \frac{{dx}}{x}}

Integrate using partial faction

On Partial Fraction, \frac{{5 + v}}{{3v + {v^2} + 2}} = \frac{4}{{v + 1}} - \frac{3}{{v + 2}}

\begin{gathered} \Rightarrow \int {\left( {\frac{4}{{v + 1}} - \frac{3}{{v + 2}}} \right)dv = \int { - \frac{{dx}}{x}} } \hfill \\ \Rightarrow \int {\frac{4}{{v + 1}}} dv - \int {\frac{3}{{v + 2}}} dv = - \int {\frac{{dx}}{x}} \hfill \\ \Rightarrow 4\ln \left| {v + 1} \right| - 3\ln \left| {v + 2} \right| = - \ln x + \ln c \hfill \\ \end{gathered}

\Rightarrow \left| {\frac{{{{\left( {v + 1} \right)}^4}}}{{{{\left( {v + 2} \right)}^3}}}} \right| = \frac{c}{x} … (4)

Now, t = vx \Rightarrow v = \frac{t}{x} = \frac{{{y^2}}}{x}

Then equation (4) becomes

\Rightarrow \left| {\frac{{{{\left( {\frac{{{y^2}}}{x} + 1} \right)}^4}}}{{{{\left( {\frac{{{y^2}}}{x} + 2} \right)}^3}}}} \right| = \frac{c}{x}

\Rightarrow {\left( {{y^2} + x} \right)^4} = C\left| {{{\left( {{y^2} + 2x} \right)}^3}} \right|

Final Answer:

Hence, Option (A) is correct.

« Absolute maximum value of the function (x^2 – 2x + 7)e^(4x^3 – 12x^2 – 180x + 31)
Line with slope greater than 1 passes A(4, 3) and intersects x–y=2 at B »


Filed Under: QnA Tagged With: JEE Main 2022, July 25th Shift 1

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Table of Content

  • For theta Belonging to 0, 4Pi the linear equations with no solutions
  • The total number of functions, f: {1, 2, 3, 4} → {1, 2, 3, 4, 5, 6} such that f(1) + f(2) = f(3), is equal to
  • α^2021 + β^2021 + γ^2021 + δ^2021 for x^4 + x^3 + x^2 + x + 1 = 0
  • Number of elements where n belongs to N and Sn Intersection Tn is phi
  • Lim n →∞, sqrt(n2-n-1)+nα+β=0 then 8(α+β)
  • Absolute maximum value of the function (x^2 – 2x + 7)e^(4x^3 – 12x^2 – 180x + 31)
  • General Solution of differential equation (x – y^2)dx +y(5x + y^2)dy
  • Line with slope greater than 1 passes A(4, 3) and intersects x–y=2 at B
  • Mean and Variance of a binomial distribution are 24 and 128
  • The slope of the tangent to a curve C: y = y(x) at any point (x, y)

© MathsTips.com 2013 - 2025. All Rights Reserved.